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The stability of fluid flow in a flexible tube to non-axisymmetric perturbations is
analysed in this paper. In the first part of the paper, the equivalents of classical
theorems of hydrodynamic stability are derived for inviscid flow in a flexible tube
subjected to arbitrary non-axisymmetric disturbances. Perturbations of the form vi =
ṽi exp [ik(x − ct) + inθ] are imposed on a steady axisymmetric mean flow U(r) in
a flexible tube, and the stability of mean flow velocity profiles and bounds for
the phase velocity of the unstable modes are determined for arbitrary values of
azimuthal wavenumber n. Here r, θ and x are respectively the radial, azimuthal
and axial coordinates, and k and c are the axial wavenumber and phase velocity
of disturbances. The flexible wall is represented by a standard constitutive relation
which contains inertial, elastic and dissipative terms. The general results indicate
that the fluid flow in a flexible tube is stable in the inviscid limit if the quantity
UdG/dr> 0, and could be unstable for UdG/dr < 0, where G ≡ rU ′/(n2 + k2r2). For
the case of Hagen–Poiseuille flow, the general result implies that the flow is stable
to axisymmetric disturbances (n = 0), but could be unstable to non-axisymmetric
disturbances with any non-zero azimuthal wavenumber (n 6= 0). This is in marked
contrast to plane parallel flows where two-dimensional disturbances are always more
unstable than three-dimensional ones (Squire theorem). Some new bounds are derived
which place restrictions on the real and imaginary parts of the phase velocity for
arbitrary non-axisymmetric disturbances.

In the second part of this paper, the stability of the Hagen–Poiseuille flow in
a flexible tube to non-axisymmetric disturbances is analysed in the high Reynolds
number regime. An asymptotic analysis reveals that the Hagen–Poiseuille flow in a
flexible tube is unstable to non-axisymmetric disturbances even in the inviscid limit,
and this agrees with the general results derived in this paper. The asymptotic results
are extended numerically to the moderate Reynolds number regime. The numerical
results reveal that the critical Reynolds number obtained for inviscid instability to
non-axisymmetric disturbances is much lower than the critical Reynolds numbers
obtained in the previous studies for viscous instability to axisymmetric disturbances
when the dimensionless parameter Σ = ρGR2/η2 is large. Here G is the shear modulus
of the elastic medium, ρ is the density of the fluid, R is the radius of the tube and
η is the viscosity of the fluid. The viscosity of the wall medium is found to have a
stabilizing effect on this instability.

1. Introduction
The present study addresses the stability of fluid flow in a flexible tube to non-

axisymmetric disturbances. An important difference between the stability of flow
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through plane channels and axisymmetric tubes is that a result similar to the Squire
theorem, which states that two-dimensional disturbances are always more unstable
than three-dimensional disturbances in a plane channel, cannot be derived for the
flow in a tube. Consequently, it is necessary to study both axisymmetric and non-
axisymmetric disturbances to determine the stability limits for the flow in a tube.
Previous studies on the stability of flow through a flexible tube were restricted to
axisymmetric disturbances. The salient results of these studies are enumerated below.

(a) The Hagen–Poiseuille flow in a flexible tube could become unstable even in
the limit of zero Reynolds number (Kumaran 1995a) when the dimensionless velocity
(Vη/GR) increases beyond a critical value. Here, V is the maximum velocity in the
tube, η is the fluid viscosity, G is the modulus of elasticity of the wall material and R
is the tube radius. This class of modes are referred to as ‘viscous modes’.

(b) The Hagen–Poiseuille flow is always stable to high Reynolds number axisym-
metric inviscid modes (Kumaran 1995b). These modes are referred to as ‘regular
inviscid modes’. This analysis is not conclusive, however, and non-axisymmetric dis-
turbances in a flexible tube could become unstable in the high Reynolds number limit.

(c) There is the possibility of the Hagen–Poiseuille flow becoming unstable in the
limit of high Re, and the instability mechanism is a continuation of the low Re
axisymmetric viscous unstable modes (Kumaran 1998a) to high Reynolds number.
The critical Reynolds number in this case scales as Re ∝ Σα, where the exponent α is
between 0.7 and 0.75. Here, Σ = (ρGR2/η2), where ρ is the fluid density.

(d) There is another class of modes, called the wall modes (Kumaran 1998b), where
the vorticity is confined to a boundary layer of thickness O(Re−1/3) at the wall of
the tube. These modes also become unstable in the high Reynolds number limit. The
critical Reynolds number in this case also scales as Re ∝ Σα, where the exponent α
is between 0.7 and 0.75.

(e) Velocity profiles very different from the parabolic Hagen–Poiseuille flow, such
as the developing flow and the converging flow in a flexible tube, could become
unstable to axisymmetric disturbances even in the limit of infinite Re (Shankar &
Kumaran 1999), and this instability is qualitatively different from the axisymmetric
viscous instability of the Hagen–Poiseuille flow. The critical Reynolds number in this
case scales as Re ∝ Σ1/2. These modes are referred to as ‘singular inviscid modes’.

In the limit of high Reynolds number, there are a number of general results due
to Rayleigh, Fjørtoft, Howard and Høiland (Drazin & Reid 1981) which predict
potentially unstable velocity profiles and provide bounds on the wave speed of the
unstable mode for two-dimensional flows bounded by rigid walls. Howard & Gupta
(1962) have extended the classical theorems to inviscid flow of a Newtonian fluid
between coaxial rigid cylinders, where the base flow velocity has both axial and ‘swirl’
(azimuthal) components; Maslowe (1974) has derived similar theorems for Poiseuille
flow in a rigid pipe. The stability of inviscid flow is very sensitive to the boundary
conditions at the surface, and the stability of flow near a rigid surface is very different
from that near a flexible surface. The classical theorems of hydrodynamic stability
are not applicable for flow in a flexible channel because a non-zero normal velocity is
permitted at the wall. Yeo & Dowling (1987) and Yeo (1994) analysed the stability of
inviscid flows in channels with passive compliant walls. A general constitutive equation
for a compliant wall was derived using a variational-Lagrangian formulation, and
this was used to relate the fluid velocity and stress at the wall. They derived bounds
on the real and imaginary parts of the phase velocity and they showed that the
bounds were consistent with some experimental observations. The classical theorems
of hydrodynamic stability were modified and extended to inviscid flow in a flexible
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tube by Kumaran (1996) in two limiting cases: axisymmetric modes and ‘highly non-
axisymmetric modes’ where gradients in the azimuthal direction are much larger than
the gradients in the axial direction. The generalization of classical theorems indicated
that the Hagen–Poiseuille velocity profile in a flexible tube could become unstable to
‘highly non-axisymmetric’ disturbances.

In § 2, the classical theorems are modified and extended to inviscid flow in a
flexible tube to arbitrary non-axisymmetric disturbances, and this part of the paper
augments the analysis of Kumaran (1996) by removing the restriction on the ‘highly
non-axisymmetric’ nature of the disturbances. The general results of § 2 indicate
that the Hagen–Poiseuille flow could become unstable in a flexible tube in the
inviscid limit, and this provides the motivation for the second part of the present
work (§ 3). In § 3, the stability of the Hagen–Poiseuille flow to non-axisymmetric
disturbances is analysed in the limit of high Reynolds number. A previous study
by the authors (Shankar & Kumaran 1999) had shown that the developing flow in
a flexible tube could become unstable to axisymmetric disturbances in the inviscid
limit, and this instability was found to persist at Re as low as 100. Importantly, the
critical Re for non-parabolic velocity profiles could be much lower than that for a
parabolic velocity profile. The mechanism of instability of the developing flow profile
to axisymmetric disturbances is qualitatively different from that of Hagen–Poiseuille
flow to axisymmetric disturbances in the limit of high Reynolds number due to the
presence of a ‘critical layer’ in the case of a developing flow. A critical layer is
also present in the stability of Hagen–Poiseuille flow subjected to non-axisymmetric
disturbances, and this qualitatively alters the nature of instability in the limit of high
Reynolds number. Consequently, it is of interest to determine the critical Reynolds
number for the Hagen–Poiseuille profile to non-axisymmetric disturbances, and to
examine whether this is lower than that for the viscous instability of axisymmetric
disturbances analysed in Kumaran (1998a).

In this paper, an asymptotic analysis is carried out in the limit of high Re (§ 3.1),
and this analysis shows that the parabolic flow is indeed unstable to non-axisymmetric
disturbances in the inviscid limit. A numerical solution of the complete governing
equations is used to extend the high-Re asymptotic solutions to the moderate Reynolds
number regime (§ 3.2). The numerical results (§ 3.3) reveal that the critical Reynolds
number for the continuation of inviscid instability to non-axisymmetric disturbances
is much lower than the critical Re for viscous instability to axisymmetric disturbances
(Kumaran 1998a) when the dimensionless parameter characterizing the flexible tube
Σ ≡ ρGR2/η2 is large. In marked contrast, the parabolic flow in a rigid tube is stable
to both axisymmetric and non-axisymmetric disturbances (Garg & Rouleau 1972;
Salwen & Grosch 1972). Thus, the instability of parabolic flow to non-axisymmetric
disturbances in a flexible tube predicted in this paper is qualitatively different from
the stability of fluid flow in a rigid tube.

2. Generalization of classical theorems
The system consists of an incompressible Newtonian fluid of density ρ flowing

through a tube of radius R whose walls are made of a flexible material. The only
restriction placed on the laminar velocity profile U(r) is that it decreases to zero at
the wall. The perturbation to the velocity field has components (vr, vθ, vx) along the
radial (r), axial (x) and azimuthal (θ) directions in a cylindrical coordinate system
of the form vi = ṽi(r) exp [ik(x− ct) + inθ]. Here, n = 0 corresponds to axisymmetric
disturbances and n > 0 for non-axisymmetric disturbances. The linearized mass and
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momentum equations for the inviscid flow are

(dr + r−1)ṽr + r−1inṽθ + ikṽx = 0, ik(U − c)ṽr + drp̃ = 0, (2.1)

ik(U − c)ṽθ + inr−1p̃ = 0, ik(U − c)ṽx +U ′ṽr + ikp̃ = 0. (2.2)

Here and in what follows, dr ≡ d/dr and a prime also indicates differentiation with
respect to r. The fluid density ρ does not explicitly appear in the above equations
because the pressure has been scaled by the density. In the following analysis, all
quantities are scaled by an appropriate combination of the density ρ, a velocity
scale of the mean flow Umax and the radius of the tube R, so that all equations are
dimensionless. The axial and azimuthal velocities can be eliminated from (2.1) and
(2.2) to provide the following equation for ṽr:

d

dr

[
r

n2 + k2r2

d

dr
(rṽr)

]
− ṽr − rṽr

U − c
d

dr

[
rU ′

n2 + k2r2

]
= 0. (2.3)

It should be noted that the form in which this equation is written here is crucial
while deriving the subsequent general results for arbitrary n. If, for example, the
derivatives in the above equation are expanded at this stage, then the subsequent
integral manipulations become very difficult for arbitrary n and hence the previous
study of Kumaran (1996) was restricted to axisymmetric (n = 0) and ‘highly non-
axisymmetric’ (n � k) disturbances. The equations governing both axisymmetric
disturbances (n = 0) and ‘highly non-axisymmetric’ disturbances (n� k) of Kumaran
(1996) are special cases of (2.3).

The dynamics of the flexible wall is represented by the normal displacement field,
u, which is the displacement of the material points in the wall medium from their
steady-state positions due to velocity fluctuations. In the linear stability theory, the
displacement field also has a normal mode form u = ũ exp [ik(x − ct) + inθ]. Note
that u is used for the displacement in the wall, and ṽi is used for the velocity field
in the fluid. For small displacements, the normal stress is a linear function of the
displacement field. The constitutive relation considered here is of the form (Kumaran
1996; Yeo 1994; Yeo & Dowling 1987)

σ̃ = −(E − k2c2I − ikcD)ũ, (2.4)

where E, I and D are the positive constants associated with the elasticity, inertia and
dissipation in the wall. These quantities are in general functions of k, n, c and the
wall properties. The wall models used by Carpenter and co-workers (see for example,
Davies & Carpenter 1997) can be written in the above form with E being a function
of k and n. The ensuing generalizations are applicable for k and n dependent E, D
and I as long as these quantities are stipulated to be positive. The above form for
the normal stress was derived by Yeo & Dowling (1987) for a passive compliant
wall using a variational Lagrangian formulation of the wall dynamics. The boundary
conditions at the interface between the wall and the fluid in the inviscid limit are the
continuity of velocity and normal stress:

−ikcũ = ṽr, σ̃ = −p̃ = (U − c)ṽx + ṽrU
′/(ik). (2.5)

The term (ṽr∗drṽr)|r=1 (the superscript ∗ denotes the complex conjugate) is required
as a boundary condition in the subsequent analysis, and this term can be evaluated
to be

(ṽ∗rdrṽr)r=1 =

[
−1− U ′

w

c
+
Ē − k2c2Ī − ikcD̄

c2

]
(ṽr ṽ

∗
r )|r=1. (2.6)
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Here, {Ē, Ī , D̄} = {E, I, D}(k2 + n2)/k2 and Ē, Ī and D̄ are positive constants. The
methods used here for obtaining the general results are similar to those used in the
previous studies (Howard & Gupta 1962; Maslowe 1974; Yeo & Dowling 1987; and
Kumaran 1996), and therefore only the gist of the derivations is provided here.

Equivalent of the Rayleigh theorem

This is derived by multiplying (2.3) by rṽ∗r and integrating from r = 0 to r = 1. The
resulting equation is multiplied by c and the imaginary part of this equation is

ci

∫ 1

0

[
r

n2 + k2
|dr(rvr)|2 + r|ṽr|2 +

r2|ṽr|2
|U − c|2 (G ′U)

]
dr

= − |ṽr|2
n2 + k2

[
Ēci + k2|c|2Īci + k|c|2D̄

|c|2
]
, (2.7)

where G(r) is defined as G(r) = rU ′(r)/(n2 +k2r2) and G ′ ≡ drG. In the above equation
we have used the expression for ṽ∗rdrṽr from (2.6). For unstable modes (ci > 0), the
right-hand side of (2.7) is negative because Ē, Ī , D̄ are positive quantities, and k> 0.
The left-hand side of (2.7) can be negative only if UG ′ is negative at some point in
the flow. This provides the equivalent of the Rayleigh inflection point theorem to flow
in a flexible tube:

Proposition 1. For an inviscid flow in a flexible tube with Uw = 0, an unstable mode
can exist only if UG ′ < 0 somewhere in the flow, where G(r) = rU ′(r)/(n2 + k2r2).

The following corollaries can be inferred from (2.7).

Corollary 1. For an inviscid flow in a flexible tube with Uw = 0 and UG ′ > 0, all
modes are neutrally stable if the wall is non-dissipative (D = 0).

Corollary 2. For an inviscid flow in a flexible tube with Uw = 0 and UG ′ > 0, all
modes are damped if the wall is dissipative (D > 0).

Proposition 1 of this paper is a generalization of Propositions 1 and 6 of Kumaran
(1996). A similar proposition for flow through rigid tubes was derived by Maslowe
(1974).

Equivalent of the Fjørtoft theorem

Equation (2.3) is multiplied by (rṽ∗r ), and the resulting equation is subtracted from
its complex conjugate and integrated from r = 0 to r = 1. The integral occurring in
the resulting equation is evaluated using (2.6) to give

− 2i

(n2 + k2)

[
Ēcrci + crk|c|2D̄

|c|4 − U ′wci
|c|2

]
(ṽr ṽ

∗
r )(r=1)

= 2ici

∫ 1

0

dr
r2|ṽr|2
|U − c|2

d

dr

[
rU ′

n2 + k2r2

]
. (2.8)

It is necessary to specify further additional conditions to derive the desired results.
First, consider U ′w = −|U ′w| < 0 and cr > 0 (downstream-travelling waves). In this
case, the above equation reduces to

− 1

(n2 + k2)

[
Ēcrci + crk|c|2D̄

|c|4 +
|U ′w|ci
|c|2

]
(ṽr ṽ

∗
r )(r=1) = ci

∫ 1

0

dr
r2|ṽr|2
|U − c|2

d

dr
G(r), (2.9)
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where G(r) = rU ′(r)/(n2 +k2r2). From the above equation, the necessary condition for
unstable perturbations (ci > 0) is G ′(r) < 0 somewhere in the flow. This is because the
left-hand side is always negative and in order to satisfy the equality, G ′(r) should be
less than zero somewhere in the flow. Similarly, for the case when cr < 0 and U ′w > 0,
it can be easily shown that G ′(r) > 0 somewhere in the flow for unstable oscillations
to exist. This gives the equivalent of the Fjørtoft theorem, and a generalization of
Propositions 2 and 7 of Kumaran (1996):

Proposition 2. For an inviscid flow in a flexible tube with Uw = 0 and Uw
′6 0

(Uw
′> 0), an unstable mode with cr> 0 (cr6 0) can exist only if G ′(r) < 0 (G ′(r) > 0)

somewhere in the flow, where G(r) = rU ′(r)/(n2 + k2r2).

The following corollaries can be derived on inspecting the equation (2.9).

Corollary 1. For an inviscid flow in a flexible tube with Uw = 0 and Uw
′6 0

(Uw
′> 0), and G ′(r) > 0 (G ′(r) < 0), all modes with cr > 0 (cr < 0) are neutrally

stable if the wall is non-dissipative (D = 0), where G ′(r) = rU ′(r)/(n2 + k2r2).

Corollary 2. For an inviscid flow in a flexible tube with Uw = 0 and Uw
′6 0

(Uw
′> 0), and G ′(r) > 0 (G ′(r) < 0), all modes with cr > 0 (cr < 0) are damped if the

wall is dissipative (D > 0), where G ′(r) = rU ′(r)/(n2 + k2r2).

A similar proposition for flow through rigid tubes was derived by Maslowe (1974).
For a parabolic flow in a flexible tube, the laminar flow velocity profile U(r) = (1−r2),
and the criterion G ′(r) < 0 yields

G ′(r) =
−4rn2

(n2 + k2r2)2
< 0. (2.10)

For axisymmetric disturbances, n = 0, and the criterion G ′(r) < 0 is not satisfied.
This implies that the parabolic flow in a flexible tube is stable in the inviscid limit to
axisymmetric disturbances. However, for any n > 0, the criterion G ′(r) < 0 is satisfied,
and the present result suggests that the parabolic flow in a flexible tube could be
unstable in the inviscid limit to non-axisymmetric perturbations of any non-zero
azimuthal wavenumber. It is also instructive to obtain the necessary condition for
instability in flow through rigid tubes from (2.9). For the case of flow in rigid tubes,
the left-hand side of (2.9) is identically zero because the normal velocity at the wall
is zero for flow in a rigid tube. Thus the right-hand side of (2.9) is zero:

ci

∫ 1

0

dr
r2|ṽr|2
|U − c|2

d

dr
G(r) = 0. (2.11)

For unstable modes (ci > 0), for the above integral to be zero, the function G ′(r)
should change its sign from positive to negative somewhere in the flow. This result is
in agreement with the result of Howard & Gupta (1962), who have derived general
results for inviscid flow through rigid concentric cylinders. For the case of fully-
developed parabolic flow in a rigid tube, the expression for G ′(r) is given in (2.10),
and it can be seen that G ′(r)6 0, and it never changes its sign in the flow. Thus,
the parabolic flow in a rigid tube is stable in the inviscid limit to all types of small
disturbances.

Bounds for cr

Consider the function g(r) ≡ rṽr/(U − c). Using the definition of g the expression
for g∗g ′ can be derived from (2.6). The governing equation (2.3) can be expressed in
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terms of g(r) and the resulting equation is multiplied by g∗, the complex conjugate of
g, and integrated from r = 0 to r = 1:∫ 1

0

(U − c)2Φ dr =
|ṽr|2

|c|2(n2 + k2)
(Ē − k2c2Ī − ikcD), (2.12)

where Φ = [r|g ′|2/(n2 + k2r2) + |g|2/r]. It is sufficient to note that Φ is a positive, real
function. Consider the imaginary part of the above equation:

2ci

∫ 1

0

(U − cr)Φ dr =
cr

|c|2(n2 + k2)
(2k2Īci + kD̄). (2.13)

From (2.13) certain conclusions can be made regarding the range of the real part
of the wave speed cr , for potentially unstable modes (ci > 0). It is convenient
to define the following quantities: UL = min [Umin, 0] , UU = max [Umax, 0], Umin =
minr [U(r)] , Umax = maxr [U(r)] . The following Proposition can easily be proved on
inspecting (2.13):

Proposition 3. For an inviscid flow in a flexible tube with Uw = 0, all unstable
(axisymmetric and non-axisymmetric) modes have UL < cr < UU , where UL and UU

are as defined before.

This Proposition is an extension of Proposition 1 of Yeo & Dowling (1987)
to the case of inviscid flow in a flexible tube. In Kumaran (1996), bounds were
derived for cr for axisymmetric and highly non-axisymmetric disturbances. The present
result (Proposition 3) does not reduce to the results of Kumaran (1996) because the
Proposition 3 of the present work is a much stronger result on the bounds of cr than
the Propositions 3 and 8 of Kumaran (1996). Moreover, in contrast to Proposition 3 of
the present work, the Proposition 8 in Kumaran (1996) for highly non-axisymmetric
modes is inconclusive for n = 1, as the bound becomes singular at n = 1.

Bounds on |c|
Equation (2.12) is multiplied by c∗, the complex conjugate of the wave speed, and

the imaginary part of the resulting equation is taken:

ci

∫ 1

0

(|c|2 −U2)Φ dr = − [Ēci + k|c|2Īci + k|c|2D̄]

|c|2(n2 + k2)
. (2.14)

The right-hand side of the above equation is always negative for unstable modes
(ci > 0), so the integral in the left-hand side should be less than zero. Since Φ is a
positive and real function, for the above equality to hold, we require |c|2 < max (U2).

Proposition 4. For an inviscid flow in a flexible tube with Uw = 0, all unstable
(axisymmetric and non-axisymmetric) modes have |c|2 < max (U2).

Equivalent of the Howard semi-circle theorem

The semi-circle theorem provides a bound on the phase velocity c for unstable modes
in the complex-c plane. A positive real function A is defined as A = |ṽr|2/[|c|2(n2 +k2)].
Equation (2.12), expressed in terms of the function A, is∫ 1

0

(U − c)2Φ dr = A[Ē − k2c2Ī − ikcD̄]. (2.15)
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The real and imaginary parts of (2.15) are∫ 1

0

[(U − cr)2 − c2
i ]Φ dr = A[Ē − k2(c2

r − c2
i )Ī + kciD̄], (2.16)

2ci

∫ 1

0

(U − cr)Φ dr = crkA[2kciĪ + D̄]. (2.17)

Since ∫ 1

0

dr (U −Umin)(U −Umax)Φ < 0, (2.18)

for Umin = min [U(r)] and Umax = max [U(r)], the following expressions can be
derived using (2.16) and (2.17):∫ 1

0

U2Φ dr =

∫ 1

0

|c|2Φ dr + A

[
Īk2cr + Ē +

kD̄|c|2
ci

]
, (2.19)

∫ 1

0

UΦ dr =

∫ 1

0

crΦ dr + A

[
crk

2Ī +
kcrD̄

2ci

]
. (2.20)

The above two equations are very similar to the equations (3.20) and (3.21) of Yeo
& Dowling (1987), and the arguments used by Yeo & Dowling (1987) to extend
the Howard semi-circle theorem for the planar case exactly carries over to the
axisymmetric geometry considered here. Therefore, we do not repeat the arguments
here and refer the reader to Shankar (1999) for more details. The extension of the
semi-circle theorem for the case of inviscid flow in a flexible tube is stated in the
following Proposition.

Proposition 5. For an inviscid flow in a flexible tube with Uw = 0, all unstable modes
must satisfy

[
cr − 1

2
(UU +UL)

]2
+ c2

i <
[

1
2
(UU −UL)

]2
,

where UL and UU are as defined before.
The bounds for the wave speed derived in this paper (Propositions 3, 4 and 5) do

not assume any restriction on the nature of the mean velocity profile, apart from
requiring that the mean velocity at the wall is zero. In the analysis of Kumaran
(1996), certain bounds for the real part of the wave speed and |c|2 were derived for
velocity profiles with UU ′

w < 0. This condition on the velocity profile is restrictive,
since biological flows due to oscillatory pressure gradients involve backflow in certain
regions and do not follow this inequality. The Propositions 3, 4 and 5 of the present
work are stronger than the equivalent propositions derived in Kumaran (1996) in the
axisymmetric and highly non-axisymmetric limits.

Equivalent of the Høiland theorem

The theorem of Høiland (Drazin & Reid 1981), which places restrictions on the
imaginary part of the phase velocity, can be extended to the case of inviscid flow
through a flexible tube. The function f(r) is defined as f(r) = rṽr/(U − c)1/2. The
governing equation (2.3) after being expressed in terms of f, is multiplied by f∗ and
integrated from r = 0 to r = 1. This equation contains the expression (f∗drf)r=1 which
can be evaluated from the expression for ṽ∗rdrṽr (see (2.6)), and the imaginary part of
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the resulting equation is multiplied by ci to give∫ 1

0

drc2
i

[
r|drf|2
n2 + k2r2

]
+

∫ 1

0

dr|f|2
{
c2
i

r
− r

n2 + k2r2

[
U ′ci

2|U − c|
]2
}

= −|f|
2
1

|c|2
[Ēc2

i + |c|2Īc2
i + k|c|2D̄ci]

n2 + k2
. (2.21)

The first term on the left-hand side of (2.21) is always positive for unstable modes
ci > 0. The term on the right-hand side of (2.21) is always negative. Thus, the second
term on the left-hand side of (2.21) has to be negative. This places the following
restriction on ci after noting that c2

i 6 |U − c|2.
Proposition 6. For an inviscid flow in a flexible-walled tube with Uw = 0, all unstable

waves satisfy

ci < max

[
r2(U ′)2

4(n2 + k2r2)

]1/2

. (2.22)

This completes the generalization of classical theorems of hydrodynamic stability
to the case of arbitrary disturbances to flow in a flexible tube.

3. Stability of Hagen−Poiseuille flow
Propositions 1 and 2 of the previous section suggest that the parabolic flow in a

flexible tube could be unstable to non-axisymmetric disturbances. The rest of this
paper is concerned with the stability analysis of the Poiseuille flow in a flexible
tube to non-axisymmetric disturbances. The system we consider is the flow of an
incompressible Newtonian fluid of density ρ and viscosity η in a tube of radius R,
which is surrounded by a visco-elastic medium of density ρ, viscosity ηw and coefficient
of elasticity G in the annular space R < r < HR. In the present analysis, the density
of the fluid and the wall material is assumed to be the same for simplicity. The
present formulation can be extended in a straightforward fashion to the case where
the densities are different. In the limit of high Reynolds number, lengths are scaled
by the radius of the tube R, velocities by (G/ρ)1/2 and time by (ρR2/G)1/2. The mean
flow velocity profile whose stability is of interest in this study is the Hagen–Poiseuille
flow which is represented in non-dimensional form as

v̄x = ΓU = Γ (1− r2). (3.1)

Here, Γ = (ρU2
max/G)1/2 is the dimensionless maximum velocity of the base flow,

and Umax is the maximum fluid velocity of the Hagen–Poiseuille flow. The scaled
Navier–Stokes equations governing the motion in the fluid are

∂ivi = 0, (3.2)

∂ivj + vj∂jvi = −∂ip+ ΓRe−1∂2
j vi, (3.3)

where ∂t = (∂/∂t) and ∂i = (∂/∂xi), Re = (ρUmaxR/η) is the Reynolds number, and
repeated indices imply a summation over that index. The pressure in the fluid is
non-dimensionalised by the shear modulus G. The stress tensor in the fluid is

τij = −pδij + Re−1Γ (∂ivj + ∂jvi). (3.4)

The flexible wall is assumed to be a viscoelastic solid continuum, and the dynamics of
the wall motion is described by the governing equations for an incompressible elastic
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material (Landau & Lifshitz 1989) modified to include viscous stresses. The dynamics
of the wall is represented by a displacement field ui which describes the displacement
of the material points in the wall medium from their steady-state positions due to
velocity perturbations. The wall material is assumed to be incompressible, and the
mass conservation equation is

∂iui = 0, (3.5)

and the momentum balance equation is

∂2
t ui = −∂ip+ ∂2

j ui + Re−1Γηr∂
2
j vi, (3.6)

where ηr = ηw/η is the ratio of the viscosity of the wall material and the fluid. The
stress tensor in the wall medium is given by

σij = −pδij + (∂iuj + ∂jui) + Re−1Γηr(∂ivj + ∂jvi). (3.7)

The second term on the right-hand side of (3.6) has a coefficient of unity because
the momentum equation has been scaled with G, the shear modulus of the wall
medium. In (3.6), vi = ∂tui is the velocity in the wall material. The above form for
the momentum equation and the stress tensor, incorporating frequency-independent
coefficients of elasticity and viscosity, was derived in Harden, Pleiner & Pincus (1991)
to describe surface fluctuations on polymer gels, and has been used in the previous
stability analyses of Kumaran (1995a, b, 1998a, b). Two assumptions have been made
in the above constitutive relation. First, the linearity assumption when relating the
stress to the strain rate and secondly the assumption of frequency-independent storage
modulus and viscosity. Experimental studies have reported that the storage modulus
for polymer gels does have a constant ‘plateau value’ for a wide range of frequencies
10−2 to 103 s−1 (Tong & Liu 1993), and the assumption regarding the frequency-
independent elasticity is well-founded. For the viscosity, which is related to the
loss modulus, we have made the simplest assumption where ηw is considered to be
frequency-independent. However, the neutral stability curves obtained in the present
analysis can easily be extended to a wall material with frequency-dependent viscosity.
For a system with viscosity η′r(ω) dependent on the frequency ω, the critical value
of η′rc(ω) for neutrally stable modes is related to the critical value ηrc determined in
the present analysis for frequency-independent viscosity by the relation η′rc(ωc) = ηrc
where ωc is the frequency of the neutrally stable modes obtained in the present
analysis. The wall medium is assumed to be fixed at r = H and the displacement field
satisfies ui = 0 for i = r, θ, x. The boundary conditions at the interface between the
fluid and the wall are the continuity of velocity and stress:

vi = ∂tui, σij = τij . (3.8)

In the linear stability analysis, small-amplitude non-axisymmetric perturbations in
the form of Fourier modes are imposed on the fluid velocity field and the wall
displacement field:

vi = ṽi exp [ik(x− ct) + inθ], ui = ũi exp [ik(x− ct) + inθ], (3.9)

where k is the wavenumber along the axial direction, n is the wavenumber in the
azimuthal direction and c is the wave speed of perturbations and the index i = r, θ, x.
The wavenumber k and n are real for a temporal stability analysis, and c = cr+ici is a
complex quantity with ci > 0 for unstable modes. On substituting the above form for
perturbations into the governing Navier–Stokes equations for the fluid, the following
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set of equations is obtained:

(dr + r−1)ṽr + inr−1ṽθ + ikṽx = 0, (3.10)

ik(ΓU−c)ṽr = Re−1Γ [(d2
r +r−1dr−r2)−(k2 +n2r−2)]ṽr−drp̃−2inRe−1Γr−2ṽθ, (3.11)

ik(ΓU − c)ṽθ = Re−1Γ [(d2
r + r−1dr − r−2)− (k2 + n2r−2)]ṽθ − r−1inp̃+ 2Re−1Γr−2inṽr,

(3.12)

ik(ΓU − c)ṽx + ΓU ′ṽr = −ikp̃+ Re−1Γ [d2
r + r−1dr − (n2r−2 + k2)]ṽx. (3.13)

The following governing equations for the displacement field ũi in the wall material
are obtained by inserting the perturbation to the wall displacement field into (3.5)
and (3.6):

(dr + r−1)ũr + inr−1ũθ + ikũx = 0, (3.14)

−k2c2ũr = −drp̃g+(1− ikcRe−1ηrΓ )[d2
r +r−1dr−r−2(1+n2)−k2]ũr−2r−2inũθ, (3.15)

−k2c2ũx = −ikp̃g + (1− ikcRe−1ηrΓ )[d2
r + r−1dr − r−2n2 − k2]ũx, (3.16)

−k2c2ũθ = −r−1inp̃g+(1−ikcRe−1ηrΓ )[d2
r+r

−1dr−r−2(1+n2)−k2]ũx+2r−2inũr. (3.17)

The boundary conditions for the fluid at the centre of the tube (r = 0) are
the kinematic conditions which state that the fluid velocity and pressure should be
bounded and continuous (Batchelor & Gill 1962). The boundary conditions at r = 0
are

ṽz(0) = p̃(0) = 0 for n 6= 0,
ṽz(0) and p̃(0) finite for n = 0,

}
(3.18)

ṽr(0) = ṽθ(0) = 0 for n 6= 1,
ṽr(0) + iṽθ(0) = 0 for n = 1.

}
(3.19)

The boundary conditions at the fluid–wall interface are the continuity of velocities and
stress applied at the perturbed interface. In a linear stability analysis, the dynamical
variables are expanded in a series about the unperturbed interface (r = 1) and the
terms linear in the perturbations to the velocity and displacement fields are retained
to obtain the following conditions at r = 1:

ṽr = −ikcũr, ṽθ = −ikcũθ, ṽx − 2Γ ũr = −ikcũx, (3.20)

τ̃rr = σ̃rr, τ̃xr = σ̃xr, τ̃rθ = σ̃rθ. (3.21)

The second term on the left-hand side of the third equation in (3.20) (the boundary
condition for the tangential velocity), which represents the variation in the mean flow
velocity at the surface due to surface displacement (Kumaran 1995a, b), is due to the
discontinuity of strain rate across the interface in the base state. However, the stresses
in the base state are continuous and no such additional terms appear in the stress
continuity conditions. The boundary conditions at the surface r = H are the zero
displacement conditions (ũr = ũx = ũθ = 0). The equations (3.10)–(3.17) can be solved
numerically to obtain the eigenfunctions in the fluid and wall media. However, these
equations are nonlinear in the wave speed and it is necessary to have a good initial
guess in order to obtain numerical solutions. To provide this initial guess, and to
determine the structure of the solutions at high Reynolds number, an asymptotic
analysis is carried out in this limit.



302 V. Shankar and V. Kumaran

3.1. High Reynolds number asymptotic analysis

In this subsection, an asymptotic analysis of the stability equations is performed in the
limit of high Reynolds number. In the leading approximation, the terms of O(Re−1)
are neglected in the fluid and wall governing equations. The perturbation velocity ṽr
is determined by solving the equation (2.3). The inviscid governing equation (2.3) is
non-dimensionalized according to the scales given in this section as follows:

d

dr

[
r

n2 + k2r2

d

dr
(rṽr)

]
− ṽr − rṽr

(U − c/Γ )

d

dr

[
rU ′

n2 + k2r2

]
= 0. (3.22)

Proposition 3 of § 2 states that for unstable modes in the inviscid limit, the wave
speeds are such that they lie between the maximum and the minimum of the base
flow velocity profile. For neutral modes (c is real), the point where the wave speed is
equal to the mean fluid velocity is a regular singular point, called the ‘critical point’.
Near this singular point, viscous effects become important and this results in a critical
layer of thickness O(Re−1/3) (Drazin & Reid 1981, Chap. 4). In the limit of high Re,
there is another region near the wall of thickness O(Re−1/2) where viscous effects
become important. In the following analysis, the critical and wall layers are assumed
to be well separated.

There are two linearly independent solutions of the equation (3.22) near the regular
singular point using a Frobenius expansion about rc (Drazin & Reid 1981, Chap. 4):

φ1(r) = (r − rc)P1(r), (3.23)

φ2(r) = P2(r) + φ1(r) log (r − rc), (3.24)

where P1(r) and P2(r) are polynomials in (r− rc) whose coefficients are obtained using
symbolic computation. P1(r) is analytic at rc and hence φ1(r) is also analytic at the
critical point, but φ2(r) has a logarithmic singular point at rc. This logarithmic term is
multi-valued and there is an ambiguity about the correct branch of the logarithm in
the evaluation of the inviscid solution. This ambiguity cannot be resolved using the
inviscid theory, and it is necessary to obtain the viscous solution in the critical layer.
The correct branch of the logarithm is determined by matching the inviscid solution
in the outer region and the viscous solution in the critical layer. The scaling analysis
near the critical layer for non-axisymmetric disturbances, where there is an additional
velocity component ṽθ , can be carried out using methods similar to the classic work of
Lin (1945). The details of this analysis are provided in Shankar (1999). This analysis
shows that the correct branch of logarithm for r < rc is

log (r − rc) = log |r − rc|+ iπ, (3.25)

if log (r − rc) = log |r − rc| for r > rc. Using the analytical expressions for the two
linearly independent solutions near the critical point as initial conditions, the equation
(3.22) is integrated numerically using a fourth-order Runge–Kutta method. The ranges
for the numerical integration are from r = rc + ε to r = 1 and from r = rc − ε to
r = 0 where ε is a small quantity ∼ 10−4. The governing equations for the wall
material in the inviscid limit are obtained by neglecting the terms of O(Re−1) in the
equations (3.14)–(3.17). These equations were solved using a numerical fourth-order
Runge–Kutta integration procedure. The boundary conditions at the wall r = H are
ũr = ũθ = ũx = 0 at this point. The general solution can then be written as a linear
combination of the three eigenfunctions in the wall medium. The boundary conditions
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at r = 1 for the inviscid flow are

σ̃rθ = 0, σ̃rx = 0, τ̃rr = σ̃rr, ṽr = −ikcũr. (3.26)

Note that the shear stresses in the fluid (τ̃xr , τ̃rθ) are set to zero in the inviscid
approximation, and there are no conditions on the tangential velocity (ṽx, ṽθ). The
above conditions, along with the kinematic conditions at the centre of the tube (3.18),
(3.19) are used to assemble a 5× 5 characteristic matrix, and the determinant of the
characteristic matrix is set to zero in order to obtain the wave speed c. It was found
convenient to fix cr/Γ such that it lies between 0 and 1 (i.e. the neutral modes are
singular) and treat Γ as the eigenvalue. Thus, for a given set of k,H, n, Γ is calculated
for a known value of (cr/Γ ). The characteristic equation admits multiple solutions
for Γ for a fixed value of cr/Γ .

In order to verify that the neutral mode does become unstable for a small change
in the velocity, the following numerical procedure was adopted. Since ci > 0 for
unstable modes, the governing equation (3.22) is regular even if 0 < cr/Γ < 1. A
series solution consistent with the boundary conditions (3.18), (3.19) was obtained
for the velocity field near r = 0. Using this as an initial condition near r = 0, the
governing equation (3.22) was numerically integrated to r = 1. The procedure for
determining the eigenfunctions in the wall material was identical to that for the neutral
modes. Using the boundary conditions at r = 1, namely normal velocity continuity,
continuity of tangential (τrθ and τrx) and normal stresses, a 4×4 characteristic matrix
was assembled. The determinant of this matrix is set to zero in order to obtain the
unknown eigenvalue. By letting Γ be very close to the neutral value, the wave speed
c was calculated from the characteristic equation. It was found that ci was indeed
positive indicating that the flow is unstable in the inviscid limit. Thus, this asymptotic
calculation verifies the Propositions 1 and 2 of the present work which predict that
the Poiseuille flow could become unstable in the inviscid limit. It is of interest to
determine whether this instability is captured by an analysis of the complete stability
equations and the values of Reynolds number up to which this instability persists.
This is accomplished using a numerical solution of the complete equations governing
the stability in the next subsection.

3.2. Stability at intermediate Reynolds numbers

In this subsection, the complete equations governing the stability of the flow (3.10)–
(3.17) are solved using a numerical method. For r → 0, the eigenfunctions are
expanded in a Frobenius series in r. This series solution is extended up to a small but
finite value of r. Using these as the initial conditions, the governing stability equations
are numerically integrated to the fluid–wall interface at r = 1. Following Garg &
Rouleau (1972), it was found convenient to work with the variables f(r) = ṽr(r)+iṽθ(r)
and g(r) = ṽr(r) − iṽθ(r) instead of ṽr and ṽθ . The governing equations for stability
in the fluid can easily be represented in terms of these new variables. The boundary
conditions in the transformed variables follow directly from (3.20), (3.21), (3.18),
(3.19). A Gram–Schmidt orthonormalization procedure was implemented in order to
overcome the stiff nature of the governing equations in the limit of high Re. The
equations in the wall medium are also transformed using a similar procedure. Using
the three boundary conditions at r = H , three linearly independent eigenfunctions
can be obtained in the wall medium. There are six continuity conditions at the fluid–
wall interface, namely that of normal stress, tangential stresses (rθ and rx), normal
velocity, and tangential velocities (x and θ components). The eigenfunctions for the
fluid velocity field and the wall displacement field were substituted in the six boundary
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Figure 1. Comparison of present numerical results (symbols) with the rigid tube results of Salwen
& Grosch (1972) (lines): (a) real part and (b) imaginary part of wave speed vs. G/(ρU2

max) for
H = 2, k = 1, n = 1. �, Re = 104; ©, Re = 104; �, Re = 10.

conditions, and a 6× 6 characteristic matrix was assembled. The determinant of this
matrix is set to zero to obtain the wave speed c.

In order to validate this numerical procedure, the results obtained from this method
are compared with that of Salwen & Grosch (1972) where the stability of Poiseuille
flow in a rigid tube to non-axisymmetric disturbances was studied. The rigid tube
limit can be recovered from the numerical procedure used in this study by considering
the limit of large elasticity, i.e. Γ−2 = G/(ρU2

max) → ∞. The data presented in tables
1 and 2 of Salwen & Grosch (1972) were used as initial guesses for the present
numerical procedure for Γ � 1 and a given H . In figures 1(a) and 1(b) the flexible
tube solution obtained using the numerical method of the present work is compared
with the rigid tube solution of Salwen & Grosch (1972) as a function of Γ−2. The
flexible tube solution converges to the rigid tube solution when G/(ρU2

max) ∼ 10. The
rigid tube results can also be recovered by fixing G/(ρU2

max) and considering the limit
(H − 1)→ 0. In figures 2(a) and 2(b) the flexible tube solution is compared with the
rigid tube solution as a function of (H − 1). Here again, the flexible tube solutions
converges to the rigid tube solution of Salwen & Grosch (1972) as (H − 1) → 0 for
different values of G/(ρU2

max). Thus, the numerical method used in the present work
is consistent with the results obtained for stability of Poiseuille flow in a rigid tube to
non-axisymmetric disturbances in appropriate limits.

3.3. Results

Using the results obtained from the high-Re asymptotic analysis as starting guesses,
the full numerical procedure outlined above was employed to continue the neutral
modes to lower Re. The transition Reynolds number at which the Hagen–Poiseuille
velocity profile becomes unstable depends on the following parameters: the axial
wavenumber k, the azimuthal wavenumber n, the dimensionless base flow velocity Γ ,
the ratio of wall thickness to fluid thickness H , and the ratio of wall to fluid viscosities
ηr . In figures 3(a) and 3(b) the results obtained from the inviscid calculation as outlined
in § 3.1 are compared with the results obtained from the full numerical solution. The
results are compared for singular inviscid neutral modes, and the wave speed c is
therefore a real quantity. Figure 3(a) shows the comparison for the real part of
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Figure 3. Comparison of inviscid calculation results (symbols) with the results obtained from full
numerical calculation (line) for azimuthal wavenumber n = 2, Re = 105, H = 2, ηr = 0: (a) neutral
wave speed (cr) vs. axial wavenumber (k); (b) non-dimensional maximum speed of the base flow
(Γ ) for the neutral modes of (a) vs. the axial wavenumber (k).

the wave speed cr and figure 3(b) shows the comparison for Γ , the corresponding
non-dimensional maximum speed of the mean flow. Both these figures show that the
full numerical and the inviscid results agree very well at high Reynolds numbers.
In figure 4, the real part of ṽr eigenfunctions obtained from the inviscid analysis is
compared with the eigenfunctions of the full numerical solution, for two different
values of n and H . The eigenfunctions are normalized such that the real part of ṽr
is set to 1 at r = 1. This figure shows that there is good agreement between the
inviscid and full numerical calculations. In figure 5, the real part of ṽx eigenfunctions
obtained from the full numerical analysis is plotted for Re = 100, 1000, 5000. The ṽx
eigenfunctions are normalized such that the real part of ṽx is set to 1 at r = 1. This
figure illustrates the emergence of sharp gradients in the ṽx velocity in the bulk of the
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[ṽ
x]

1.2

0.8

0.4

0

0 0.2 0.4 0.6 0.8 1.0

1000

5000

Re = 100

Figure 5. The real part of the ṽx eigenfunction obtained from the full numerical calculation showing
the emergence of sharp gradients near the critical and wall layers: H = 5, n = 1, k = 1, ηr = 0.

flow (critical layer) and near r = 1 (wall layer), as the Reynolds number is increased.
The critical and wall layers are clearly identifiable at Re = 5000, and they are well
separated from each other.

A numerical continuation procedure was used to continue the asymptotic results to
lower values of the Reynolds number, and the initial Reynolds number was usually set
to 105. All the results are plotted in terms of Re vs. Σ, where Σ = (ρGR2/η2) = (Re/Γ )2

is a parameter that depends only on the material properties of the fluid and the wall,
and it is independent of the flow parameters. In figure 6, the neutral stability curve
is plotted in the Re vs. Σ plane for the instability obtained in the present work for
H = 2, n = 1, k = 3 and ηr = 0. As mentioned in § 3.1, the characteristic equation
of the inviscid stability problem admits multiple solutions for fixed values of H , n,
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Figure 6. The neutral stability loops illustrating multiple solutions for H = 2, n = 1, k = 3, ηr = 0.

k and ηr . Figure 6 shows three neutral ‘loops’ corresponding to the continuation of
three of the multiple solutions in the inviscid limit. In each of these neutral curves,
the region within the loop is unstable and the region outside the loop is stable. For a
given neutral curve, and for fixed Σ, there is a first transition from stable to unstable
modes as Re is increased (when the ‘lower branch’ of the neutral curve is crossed), and
there is a second transition from unstable to stable modes for a further increase in
Re (when the ‘upper branch’ of the neutral curve is crossed). The lower branch of the
neutral curves is obtained as a continuation from the results of the inviscid analysis of
§ 3.2, and the Reynolds number was decreased in the numerical continuation scheme.
It is seen that the neutral curves do not extend to arbitrarily low values of Σ, and
the continuation of the inviscid instability exists only up to a certain Σ below which
the flow is stable. Our computations indicate that the critical and wall layers are
not well-separated along the upper branch of the neutral curve in the (Re, Σ)-plane
and they merge at high Reynolds numbers along the upper branch. In the inviscid
asymptotic analysis of § 3.2, it was assumed that the critical and wall layers are well
separated, and hence, the solutions of the upper branch in the high Reynolds number
limit are not accessible to the present inviscid analysis. The inviscid solutions of § 3.1
were used to obtain only the lower branch of the neutral curve where the critical and
wall layers are well separated.

In figure 7 neutral curves for different values of k are plotted for the case of
H = 2, n = 1, ηr = 0. In this figure, we have plotted only the most unstable of the
multiple solutions for each k. The most unstable mode for a given k is defined here
as the neutral curve with the lowest value of transition Re below which the flow is
stable. Also, we have plotted the neutral curves only for three different k for the sake
of clarity. In the region between the loops there exist unstable regions of other axial
wavenumbers k which are not shown in this figure. The most important neutral curve
which gives the lower bound for instability is the curve whose lower branch has the
minimum Re for a given Σ. This is because, for any fixed Σ, the region below this
curve is stable to disturbances of all wavelengths and the region above the curve is
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Figure 7. The neutral stability loops for different values of k: H = 2, n = 1, ηr = 0.
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Figure 8. Comparison of present results for non-axisymmetric modes with the results from the
axisymmetric (n = 0) viscous instability of Kumaran (1998a): critical Reynolds number vs. Σ for
H = 2, ηr = 0. Only the lower branch of the neutral curves is plotted here.

unstable either due to this particular k, or due to instability to modes with other
values of k. Consequently, for a given Σ, the lower branch with the smallest Ret gives
the critical Reynolds number above which the flow is unstable and below which the
flow is linearly stable.

The critical Reynolds number curves (as defined above) for the continuation of
non-axisymmetric inviscid modes are plotted in figure 8 for H = 2 and different values
of n. It should be mentioned here that only the lower branch of these neutral curves
is shown in this figure, since this information is sufficient to determine the critical
Reynolds number below which the flow is completely stable. It should also be noted
that in these curves, the continuation of the non-axisymmetric inviscid modes does not
extend below Σ ∼ 105 for H = 2. The critical Re curve obtained for the axisymmetric
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Figure 9. Effect of viscosity of the wall medium (ηr) on the neutral stability curves for azimuthal
wavenumber n = 1. Only the lower branch of the neutral curves is plotted here.

viscous instability of the Hagen–Poiseuille velocity profile (Kumaran 1998a) is also
plotted in the same figure for comparison. The critical Re curve for the viscous
axisymmetric instability was obtained (Kumaran 1998a) as a numerical continuation
of the viscous instability of Kumaran (1995a). This figure shows that the critical Re
obtained for the continuation of the inviscid instability to non-axisymmetric modes is
much lower than the critical Re of the viscous instability to axisymmetric modes for
Σ > 105. Thus, this instability can be effective in the limit of moderate to high Σ. The
inviscid instability does not exist for Σ < 105 for H = 2, and consequently for lower
values of Σ, the viscous instability will be the important destabilizing mechanism. This
plot also shows that the non-axisymmetric disturbance with azimuthal wavenumber
n = 1 gives rise to the lowest critical Re for a given Σ. Thus, the continuation of the
non-axisymmetric inviscid unstable mode with n = 1 is the most unstable mode for
Hagen–Poiseuille flow in a flexible tube with H = 2. In figure 9, the effect of viscosity
of the wall medium on the lower branch of the neutral curve is examined. This plot
of critical Reynolds number vs. Σ shows that the critical Reynolds number increases
as ηr is increased indicating that the viscosity of the wall medium has a stabilizing
effect on this instability.

The numerical results obtained for a wall thickness of H = 5 are discussed next.
The neutral curves for H = 5 show rather complex behaviour and it is first useful
to mention the types of modes that are possible for non-axisymmetric disturbances.
The main focus of this paper is on the continuation of the singular inviscid non-
axisymmetric modes to moderate Re. However, at moderate Re, a continuation of
the viscous non-axisymmetric mode could also exist. The viscous non-axisymmetric
mode (n 6= 0) is qualitatively similar to the viscous axisymmetric modes (n = 0)
analysed in Kumaran (1995a, 1998a), and these modes are obtained as a continuation
from the Re → 0 limit to moderate Re. Figure 10(a) shows two neutral curves in
the (Re, Σ)-plane for H = 5, n = 1, k = 3, ηr = 0. In this figure, the neutral stability
loop is the continuation of singular inviscid modes, and it has the same qualitative
features as discussed above for the H = 2 case. The other curve which extends from
Re → 0 to Re ∼ 104 is the continuation of the viscous mode for n = 1, k = 3.
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Figure 10. The neutral stability curves illustrating continuations of non-axisymmetric inviscid and
non-axisymmetric viscous instabilities as k is varied for H = 5, n = 1, ηr = 0. (a) k = 3, viscous
and inviscid modes are widely separated; (b) k = 1.308, the curves approach each other; (c)
k = 1.307, 1.308, 1.3, the curves merge; (d) k = 0.65, 1.0, 1.307, for 105 < Σ < 1010, Re ∼ Σ1/2, while
for 10−6 < Σ < 10−1, Re ∼ Σ.

This figure illustrates that the neutral curve associated with the continuation of
the inviscid mode appears at a much lower Re than the viscous neutral curve, and
the continuation of the inviscid instability exists only for Σ > 105. This figure also
shows that the non-axisymmetric viscous and inviscid modes are widely separated
for k = 3. As k is decreased, however, the two modes intersect each other and merge
together and give rise to a single neutral curve as illustrated in figures 10(c) and 10(d).
Figure 10(b) shows the continuations of the singular inviscid mode and the viscous
mode approaching each other for k = 1.308. In figure 10(c), the neutral curves for
the viscous and inviscid instability for k = 1.308 are plotted along with the neutral
curve obtained for k = 1.307 and k = 1.3. Only a part of the Re, Σ region is shown
here for clarity. In this figure, for k = 1.308, there are two separate neutral curves
corresponding to the continuations of singular inviscid and viscous modes. However,
for k = 1.307 and k = 1.3, the neutral curve corresponding to the inviscid instability
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Figure 11. Comparison of neutral stability curves for the continuation of the non-axisymmetric
inviscid instability (n = 1, ηr = 0) with the continuation of the axisymmetric viscous instability of
Kumaran (1998a): (a) H = 5, k = 1; (b) H = 1.2, k = 3.

has merged with the neutral curve corresponding to the non-axisymmetric viscous
instability, thus giving rise to a single neutral curve.

Further decrease in k yields a single neutral curve which extends over a wide
range of Reynolds number as shown in figure 10(d). This figure shows neutral curves
for three values of k, and for all the cases the neutral curves were continued from
Re = 105 using the inviscid asymptotic results as starting guesses. It can be seen that
neutral modes continue from Re ∼ 105 to Re ∼ 10−4. When 105 < Σ < 1010, the
scaling relation along the neutral curve is Re ∼ Σ1/2 characteristic of the inviscid
modes, and when 10−6 < Σ < 10−1, Re ∼ Σ which is characteristic of the viscous
modes. In figure 11(a), the neutral curve obtained for n = 1, k = 1, H = 5 obtained
in this paper is plotted along with the neutral curve of the most unstable mode
obtained as a continuation of the viscous axisymmetric neutral curve of Kumaran
(1998a) for H = 5. This figure shows that for Σ > 103, the neutral curve obtained in
this paper has much lower critical Reynolds number, while for Σ < 103 the neutral
curve obtained in Kumaran (1998a) has a lower critical Reynolds number. Thus,
for H = 5, the instability analysed in this paper will be important for Σ > 103,
while the axisymmetric viscous instability of Kumaran (1998a) will be important for
Σ < 103. In figure 11(b), the neutral curve obtained in this paper is compared with
that of Kumaran (1998a) for H = 1.2. The neutral curve corresponding to n = 1
was obtained as a continuation of the inviscid results of § 3.1, while the neutral curve
for n = 0 was obtained as a continuation (Kumaran 1998a) of the viscous modes to
the intermediate-Re regime. This figure again demonstrates that for high values of Σ
(Σ > 102 in this case) the continuation non-axisymmetric inviscid instability has much
lower critical Reynolds number than the axisymmetric viscous mode. For Σ < 102,
however, the continuation of the axisymmetric viscous mode has a lower critical Re,
and this would be the important destabilizing mechanism for such cases.

From the numerical results presented above, the following general picture emerges
for the linear stability of parabolic flow in a flexible tube. The Hagen–Poiseuille flow
in a flexible tube will become unstable to inviscid non-axisymmetric modes for tubes
with large values of Σ. For smaller values of Σ, the continuation of the axisymmetric
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viscous modes is the most unstable. The value of Σ at which this cross-over from
inviscid instability mechanism to viscous instability mechanism occurs depends on
H . For H = 2, the inviscid non-axisymmetric modes do not extend below a certain
value of Σ ∼ 104, and the axisymmetric viscous modes will destabilize the flow
for small Σ. Even if the inviscid modes continue to very low values of Σ (as for
H = 5 and H = 1.2), the critical Reynolds number of viscous axisymmetric modes is
much lower than the inviscid modes for low values of Σ. Consequently, the inviscid
non-axisymmetric modes analysed in this paper will be powerful in destabilizing
the Hagen–Poiseuille flow in flexible tubes in situations where the dimensionless
parameter Σ is large.

We now provide a brief comparison of the present work with some representative
previous theoretical studies. In the limit Re � 1 and ρV 2/G ∼ O(1), two classes of
modes are possible in flow past flexible surfaces which are absent in the flow past
rigid surfaces. The first class of modes is called the ‘regular inviscid modes’. For these
modes, there is a balance between the inertial forces in the fluid and elastic forces
in the wall. In the limit of high Re, the flow is inviscid in the core of the tube,
and there is a wall layer of thickness O(Re−1/2) smaller than the tube radius where
the viscous stresses are important. The destabilizing mechanism in this case is the
work done by the pressure forces on the wall material. This type of instability has
been observed in flows past walls made of spring-backed plates. Carpenter & Garrad
(1985) studied the effect of wall compliance on the Tollmien–Schlichting instability
that already exists in flow past rigid surfaces. The instability analysed in Carpenter &
Garrad (1986) is a Kelvin–Helmholtz-type instability where the discontinuity of the
mean velocity profile at the interface is the primary driving force. Asymptotic and
numerical studies of regular inviscid modes have also been carried out by Carpenter
& Gajjar (1990) for the case of a Blasius boundary layer past a compliant wall and
Davies & Carpenter (1997) for the case of fully developed flow in a two-dimensional
channel with compliant walls.

The unstable modes analysed in this paper are classified under ‘singular inviscid
modes’. For parabolic flow in a flexible tube subjected to non-axisymmetric dis-
turbances, the leading-order inviscid stability equation contains a singularity when
Re � 1, where the wave speed of the disturbances equals the local fluid velocity.
Viscous effects become important in the critical layer of thickness O(Re−1/3) and in
the wall layer of thickness O(Re−1/2). The physical mechanism driving the instability
is the convective transport of energy from mean flow to fluctuations due to the
Reynolds stresses in the critical layer. Critical layers are absent in the stability of
Hagen–Poiseuille flow to axisymmetric disturbances (regular inviscid modes), and the
flow is stable in the limit of high Re (Kumaran 1995b).

4. Conclusion
The stability of fluid flow in a flexible tube to non-axisymmetric disturbances was

analysed using asymptotic and numerical methods. In § 2, the classical theorems of
hydrodynamic stability concerning the temporal instability of inviscid flows over rigid
walls were modified and extended to the case of inviscid flow through flexible tubes.
The important results were stated in Propositions 1 to 6 in § 2. The only assumption
made in deriving these theorems is that the laminar velocity profile is axisymmetric,
and reduces to zero at the wall of the tube. Since a Squire-like theorem cannot be
derived for axisymmetric geometries, it is necessary to consider non-axisymmetric
disturbances when analysing the stability in such geometries. For the practically
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important case of Hagen–Poiseuille flow, the general results predict that the flow
is always stable to axisymmetric disturbances, but could be unstable in the inviscid
limit to non-axisymmetric disturbances with any non-zero azimuthal wavenumber.
An important result on the bounds of the real part of the wave speed cr for unstable
modes is that UL < cr < UU; here UL is the smaller of the minimum of the base
flow velocity and zero, and UU is the larger of the maximum of the base flow
velocity and zero. For mean flows which satisfy the no-slip condition at the wall
and vary monotonically towards the centre of the tube, the bounds on cr reduce to
0 < cr < Umax. When 0 < cr < Umax, the point at which cr = U is a regular singular
point, and there is an associated critical layer where viscous effects are important
(Drazin & Reid 1981). The bound on cr obtained in the present work indicates that
the unstable modes in the inviscid limit are the singular modes for velocity profiles
that vary monotonically from the wall to the centre. These general results can be used
in identifying potentially unstable velocity profiles, and the bounds on the wave speed
can be used as a guide in the numerical search for unstable modes at high Reynolds
number.

The stability of the Hagen–Poiseuille flow in a flexible tube to non-axisymmetric
disturbances was analysed in the limit of high Re using an asymptotic analysis.
This analysis showed that the flow is unstable in the inviscid limit, and this is in
agreement with the prediction of Propositions 1 and 2 derived in this paper. A
numerical procedure was used to continue these inviscid modes to lower Re by
solving the complete governing equations. Results from this numerical solution show
that the continuation of the inviscid instability can persist even at very moderate Re.
Comparison with the results of Kumaran (1998a) shows that the critical Re for the
continuation of the non-axisymmetric inviscid instability could be far lower than the
critical Re of the axisymmetric viscous instability when the dimensionless parameter
characterizing the flexible tube, Σ ≡ ρGR2/η2, is large. The viscosity of the wall
medium is found to have a stabilizing influence on this instability. In conclusion,
the present study shows that the instability of the fluid flow to non-axisymmetric
disturbances could be practically important in initiating the transition in flexible
tubes when the dimensionless parameter Σ is large. It is useful to estimate the value
of Σ in a typical application, in order to determine the applicability of the regime
Σ � 1. The shear modulus G varies in the range 102–103 N m−2, the lower value being
typically encountered in soft biological tissues while the upper limit is applicable to
dense polymer gels. The viscosity of fluids and biological suspensions is typically in
the range 10−2–10−3 N s m−2, while the density of most liquids is about 103 kg m−3.
Using the above values, Σ can be estimated as Σ ∼ 1011R2. Even when R ∼ 10−3 m,
Σ ∼ 105. Thus, the present instability is expected to be encountered in flexible tubes
with radii of O(1 mm) and higher.
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